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We construct symmetric and exterior powers of the vector representation of the 
elliptic quantum groups E,,~(sl~v). The corresponding transfer matrices give rise 
to various integrable difference equations which could be solved in principle by 
the nested Bethe ansatz method. In special cases we recover the Ruijsenaars 
systems of commuting difference operators. 
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1. INTRODUCTION 

Elliptic quantum groups [ F]  are the algebraic structure underlying quan- 
tum integrable models of statistical mechanics involving elliptic functions, 
and the q-deformation of conformal field theory on elliptic curves. 

The basic object, appearing in the presentation of elliptic quantum 
groups by quadratic relations, is a "dynamical R-matrix," a solution of a 
modification of the Yang-Baxter equation. This R-matrix depends on the 
spectral parameter and on an additional parameter lying in the Cartan sub- 
algebra of a simple Lie algebra. The usual Yang-Baxter equation is obtained 
in the limit when the latter parameter tends to infinity. However, for elliptic 
solutions, a limit exists only in trigonometric degenerations. 

In this paper we start a study of the representation theory of elliptic 
quantum groups of type A~_ ~, and give some applications. We construct, 
using the fusion procedure [ KRS, C, J K M O  ], analogues of the symmetric 
and exterior powers of the vector representation of sl~v. Out of these 
representations, and their tensor products, one can construct new dynamical 
,, 
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R-matrices. Taking partial traces of these R-matrices gives rise to families of 
commuting difference operators. In a special case, we recover the Ruijsenaars 
system [ R ] of difference operators, which is the difference (or "relativistic") 
analogue of the Calogero-Moser integrable system of differential operators. 
In particular, we obtain a simpler proof of the commutativity of Ruijsenaars 
operators, in the case of integer coupling constant. For more general repre- 
sentations, one obtains some "spin generalizations" of Ruijsenaars operators. 

The transfer matrix associated to the top exterior power turns out to 
be related to the quantum determinant, a difference operator which is 
central in the "operator algebra" associated to the elliptic quantum group. 

In previous papers [FV4, FV5], a dynamical version of the Bethe 
ansatz was developed, and the algebraic integrability of the Ruijsenaars 
model was proved in the A~ case. It is likely that a dynamical version of 
the "nested" Bethe ansatz (a recursive Bethe ansatz for A~r_ l) can be used 
to study the eigenvalue problem for these families of commuting operators. 

Let us conclude this introduction by making some comments on 
related papers. The representation theory of elliptic quantum groups was 
described in [ FV3 ] for the A~-case. In the trigonometric degeneration, the 
Ruijsenaars operators become the Macdonald difference operators. They 
are related to the representation theory of finite dimensional quantum 
groups, as pointed out by Etingof and Kirillov [EK]. In fact, in this case, 
one can construct them as transfer matrices with dynamical R-matrices 
without spectral parameters, see [ABB]. In the elliptic case, Ruijsenaars 
operators can also be obtained as transfer matrices associated to the 
Sklyanin algebra, as shown by Hasegawa [ H ]. His construction appears to 
be related to ours, but is more complicated due to the complexity of the 
vertex-IRF transformation relating the two approaches. Hasegawa also 
gives a space of theta functions which is invariant under the action of the 
Ruijsenaars operators. 

2. THE ELLIPTIC Q U A N T U M  G R O U P  A S S O C I A T E D  TO s l  N 

We review here the definition of the elliptic quantum group E =  
E~,r/2(sl~r) associated to slur [F]  (or rather of its representations) and the 
construction of commuting transfer matrices associated to representations 
of E [ FV4 ]. 

Let I? be the Cartan subalgebra of slur. It is the Abelian Lie algebra of 
diagonal traceless complex N x N  matrices. Its dual space 1~* is then 
oN/c (1 ,  1, .... 1) and is spanned by the (images of) coj=diag(0,..., 0, 1, 
0 .... ,0) with a 1 in the j th  position ( j =  1,..., N). 

A finite dimensional diagonalisable b-module is a complex finite dimen- 
sional vector space W with a weight decomposition W= ( ~ , ~ .  W[p ], so 
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that b acts on W [ p  ] by xw = p(x)  w, (x e b, w e W[/z ] ). For example, the 
vector representation is V=  C ~v with standard basis e, ,..., eN and with non- 
zero weight spaces V[ ogj] = Ce:, j = 1,..., N. 

Let us fix a point r in the upper half plane and a genetic complex 
number ?. Let 

0(z) = -- y '  e "0"2"+2"ij(z+'/z) 
j E Z +  1/2 

be Jacobi's first theta function. 
Let R(z, 2 )~End(C~v |  ~v) be the R-matrix of the elliptic quantum 

group E = E,. r/z(slN). It is a function of the spectral parameter z e C and an 
additional variable 2 = ( 2 ,  ..... 2~r) e I}* in the dual of the Cartan subalgebra 
of sl~v. It is a solution of the dynamical Yang-Baxter  equation 

R(zl  - z2, 2 - },h(3)) ('2) R(z ,  - z3, 2) ('3) R(z2--  z3, 2 - },h(')) (23) 

= R ( z 2 -  z3, 2) (23) R(z ,  - z 3 ,  2 -  },h(2)) ('3) R ( z , -  zz, 2) ('2) 

and is "unitary": 

R(z, ~) R ( - z ,  2)(21) = Idcu| 

We adopt a standard notation: for instance, R(z, 2-},h(3)) (t2) acts on a 
tensor v, | v2 | v3 as R(z, 2 - ?P3) | Id if v3 has weight P3. The formula for 
R is 

N 

R(z, ~) - 2 Ei.i (~ Ei, i -k- Z or(z, iIi - ~.j) Ei. i (~ Ej, j 
i= I  i # j  

i @ j  

The functions a, fl are ratios of theta functions: 

O(z) O(z + ~,) O(z + 2) 0(~,) 
~(z ,~)=O(z_~)O(Z) ,  P(z, 2 ) = - O ( z _ r ) O ( , ~  ) 

and Ei, j is the matrix such that Ei, jek=Oj, ke i. Note that R(z, 2) is 
invariant under the symmetric group S~v (the Weyl group of sl~v), in the 
sense that for any permutation a 

R(z, a. 2 ) = a |  ~) a -~ |  -~ (i) 

where SN acts linearly on b and C N by permutation of coordinates. 
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A representation of the elliptic quantum group E (an E-module) is by 
definition a pair (W, L) where W is a (say finite-dimensional, diago- 
nalisable) [~-module and L(z, 2) is a meromorphic function with values in 
End~(C~V| W) (the endomorphisms commuting with the action of I~), 
obeying the relations 

R ( z  I - - z 2 , / ~ -  ~h(3)) (12) L(zl, 2) (13) L(z2,/].- ~'h(1)) (23) 

= L(z2  '/].)(23) L(Z l  ' / ] ._  ),h(2))(13) R(Zl  _ z2 ' 2)(12) 

An E-submodule of an E-module ( W, L) is a pair ( WI, L l) where WI is an 
I~-submodule of W such that C"|  WI is invariant under the action of all 
the L(z, 2) and L~(z, 2) is the restriction to this invariant subspace. E-sub- 
modules are E-modules. 

The basic example of an E-module is (C N, L) with L(z, 2) = R ( z -  w, 2). 
It is called the vector representation with evaluation point w and is denoted 
by V(w). 

Other modules can be obtained by taking tensor products: if ( WI, LI) 
and (W2, L2) are E-modules, then also ( WI | W2, L), with L(z, 2) = 
Ll(z, 2"- )'h(3)) (12) L2(z, ,~.)(13). 

The transfer matrix associated to an E-module (W, L) is a difference 
operator acting on the space F( W[0 ]) of meromorphic functions of 2 e b* 
with values in the zero-weight space of W. It is defined by the formula 

T(z) f(2) = ~ tr(l)v[u j" L(z, 2 ) f ( 2 -  y/z) 

The trace is over the (one-dimensional) weight spaces of V = C ~  More 
explicitly, let us introduce matrix elements by L(z, 2) ei |  jej| 
Lji(z, 2) v. Then 

N 
T(z) f(2)= ~ L,,(z, 2) f ( 2 -  ~co,) 

i=1 

It follows from the Yang-Baxter equation that the transfer matrices com- 
mute for different values of the spectral parameters. For tensor products of 
vector representations one recovers in this way the transfer matrices of IRF 
models. In this paper we consider another class of modules. 

3. S Y M M E T R I C  A N D  EXTERIOR POWERS OF THE 
VECTOR REPRESENTATION 

For any n=l ,2 , . . . ,  the symmetric group S, acts on (C~V)| 
ClV| ... |  ~v by permuting the factors. A tensor in (cN) | is called 
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symmetric if it is invariant under the symmetric group. We denote by 
S"(C ~r) the space of symmetric tensors. We denote by A" (C ~v) the nth 
exterior power of C ~r. It is the quotient of (C ~v) | by the subspace J.(C ~v) 
spanned by the tensors of the form ~rv-e (a)v ,  cr~S,,, v~(C~V) | Here 
e(cr) is the sign of the permutation a. 

The R matrix is invertible for generic values of the parameters. It 
becomes singular at special values of the spectral parameter. As is well- 
known in the non-dynamical case, these singularities are responsible for the 
reducibility of the generically irreducible tensor products of evaluation 
representations at special evaluation points. 

Lemma 3.1. Let y and 2~b* be generic. Then R(z, 2) is a non- 
singular matrix for all z :/: -I-y (modulo 7/+ rZ). 

(i) The image of R ( - y ,  2) is $2(C ~v) 

(ii) The kernel of Rr~g(y, 2)-res~__r R(z, 2) is J2(CN)--S2(C N) 

Proof. ,  We have the "unitarity property" R(z, 2) R ( - z ,  2)(21)=l 
which implies that R(z, 2) is nonsingular unless z or - z  is a pole. This 
occurs only if z = +_y. The other claims follow easily from the definition 
of R. 

Let us define operators W~(z, 2)~End((ClV) | ( z~C" ,2~b*)  recur- 
sively by the conditions" 

Wl(z, 2 )=  1 

n+l /(12) 
W,+ ~(z, 2) = R z~ - z2, ;t - ~, ~ h (:) 

j - -3  

�9 ". R(zl  -- z,,, 2 -- ?h ('+ 1))(1,,) 

x R(zx - z , ,+  l, 2) (l'+ l) ( 1 | W,,(z2 ..... z,,+ l, 2 -  yh(1))) 

For instance, W2(z, 2)=  R ( z l - Z  2, 2) and W3(z, 2) is the left-hand side of 
the dynamical Yang-Baxter equation. It has therefore two expressions as a 
product of three R-matrices. 

Similarly, W, can be written in several different ways as a product of 
n ( n -  1 )/2 R-matrices. This is most easily seen using a graphical representa- 
tion. The left part of Fig. 1 represents the expression obtained by using the 
recursive definition. Let us number the lines of the drawing from 1 to n 
from left to right at the bottom of the drawing. Every crossing between a 
line j and a line k represents an R-matrix 

)(jk) 
R z : - - z k , 2 - - ~ , ~ h  (t) 
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where we adopt the convention that the line numbered j is at the left of the 
line k below the crossing. The sum is over the numbers l assigned to the 
lines at the left of the crossing. The expression represented by the drawing 
is then the product of these R-matrices, the ordering being determined by 
reading the drawing from the bottom to the top, so that the bottom crossing 
corresponds to the rightmost R-matrix. Using this rule, one can assign a 
product of R-matrices to any drawing obtained by putting vertical segments 
and crossings on top of each other, as in Fig. 1, so as to obtain n lines 
connecting n points at the bottom with n points at the top. A drawing of 
this kind will be called a diagram. To each diagram D with n lines we 
thus associate a function Wn(z, 2) on CNx I)* with values in the endo- 
morphisms of (C ~v) | Every diagram with n lines induces a permutation 
of n letters: it sends j to k if the j th  point at the bottom is connected to the 
kth point at the top. 

I . emma 3.2. If two diagrams D, D' induce the same permutation 
then Wo(z, 2 ) =  Wo,(z, 2). 

Proof. We use the fact that the symmetric group S, is generated by 
adjacent transpositions s,,..., s,,_ ~ with relations (a) s ] =  1, (b) sjsj+~sj= 
sj+~sjsj+l, (c) SjSk=SkSj if I j - -k l  >~2. To a diagram we associate in an 
obvious way a word in the generators sj, so that its image in S, is the 
induced permutation. For example, we associate the word $3s2s1s3s2s 3 to 

the diagram on the left in Fig. 1. If two diagrams induce the same permuta- 
tion, the corresponding words can be obtained from each other by apply- 
ing a sequence of relations. To each relation there corresponds a property 
of R-matrices that implies that the corresponding endomorphisms Wn(z, 2) 

X 

X 

L KX 
X 

X 

Fig. 1. Two expressions for I4"4(z, 2). 
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coincide: namely, we have (a) the "unitarity," (b) the dynamical Yang- 
Baxter equation, and (c) R(J'k)(z, 2--Zt~Lh(t) )  commutes with R(~'~)(z, 
~. - Zt~K h (~)) if the sets {j, k} and {r, s} are disjoint, and are either con- 
tained in or have empty intersection with L and K. ] 

Corollary 3.3. Let us call a diagram admissible if every line crosses 
every other line precisely once. The products of R-matrices associated to 
any admissible diagram are all equal to W,,(z, 2). 

Def in i t ion .  Let zS=(0,  7,27, . . . , (n-1)7) ,  z"  = ( ( n - 1 )  7,..., 27, 7, 0). 
We set 

ws( 2 ) = W.( z s, ,l ), 

17--1 

W2(2)=  lim 1-I ( z j - z j + ] - 7 ) W , ( z ,  2) (" .... ,1) 
z - ' * z ^  j----- 1 

Remark. Note that the spectral parameter in any of the R-matrices of 
the product defining Ws(2) is always a negative multiple of 7, so that there 
are no divergent R-matrices in this product. Similarly, W 2 (2) is a product 
of R-matrices with spectral parameter kT, with k = 2, 3,..., which are finite, 
and "regularized" R-matrices Rreg( 7, 2) = resz= ,R(z, 2). 

Proposition 3.4. Let 2 be generic. Then 

(i) The image of WS(2) is equal to S"(ClV). 

(ii) The kernel of W~'(2) is equal to Jn(cN). 

Proof. The proofs of the two parts are similar: one inclusion is a con- 
sequence of Lemma 3.1 and Corollary 3.3. The other inclusion is shown by 
counting dimensions at 7=  0. We use the fact that the dimension of the 
image (kernel) of a holomorphic family of matrices at a generic point is at 
least (at most) the dimension at a special point. 

Let P denote the flip u | v ~ v | u on C~V| C ~. Since every permuta- 
tion is a product of adjacent transpositions, we have 

S"(C~r) = {v~(C~v)| l P(i'i+~)v=v, j =  1, . . . ,n-  1} 

N - - 1  

J.(C'~) = ~ { P ( " ' + ~ ) v + v l v e ( C " )  | 
j - - I  

(i) Let us first show that the image of wS(2) is contained in Sn(CN). 
It suffices to show that P(J" J + 1) wS(2) = wS(2) for all ] = 1,..., n - 1. This 
follows from Lemma 3.1(i), and the fact that we can always find an 
admissible diagram such that the highest crossing is the one between line 
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j and line j + 1 (take any admissible diagram and "move" lines j, j + 1 so 
as to push the crossing to the top). 

Let us now show the converse, by considering the limit y ~ 0. The 
operator WS(2) is a product of R-matrices whose spectral parameter is a 
negative integer multiple of y. Let us write Ry(z, 2) for our R-matrix to 
make the ),-dependence apparent. The R-matrix at z = - k y  (k = 1, 2 .... ) is 
then regular as a function of y at y = 0 and its limit 

l i m R y ( - k y ,  2 ) =  k I d +  1 
r--,0 k +  1 k +  1 

acts as the identity on S2(cN). Hence, if y = 0 ,  WS(2) acts on symmetric 
tensors as the identity and thus the image contains all symmetric tensors. 
It follows that, for generic y, the dimension of the image is at least the 
dimension of S"(C~V). But since the image is contained in S"(C~V), it must 
coincide with it. 

(ii) we first show that the kernel of W~'(2) contains J~(C~V). If a vec- 
tor is of the form w = ptj, J+ l) v + v, then W~' (2) vanishes on it, as follows 
from Lemma 3.1 using a representation of W~(2) corresponding to an 
admissible diagram such that the crossing between line j and line j + 1 is at 
the bottom. 

Let us now show that, in the generic case, the kernel of W~(2) is con- 
tained in J,,(ClV). Let A,,(ClV) = {v~(ClV)| = --v, j =  1,..., n} be 
the space of antisymmetric tensors. We have a direct sum decomposition 
(C iv) | = J,,(ClV) ~ A,,(ClV). Indeed, A,,(C N) is the orthogonal complement 
of J ,(C ~v) with respect to the product of standard inner products. 

As y ~ 0, we have 

1 
lim Ry(ky, 2) = I d - k  i P' k = 2, 3,... 
y--*0 

1 
lim - R~eg(y, 2) = Id - P 
r---o 7 

Thus, for y = 0, y-"+1W~'(2) acts as a non-zero multiple of the identity on 
A,(C~r). The dimension of the kernel is therefore at most the dimension of 
J,,(ClV), and the claim follows. 

T h e o r e m  3.5. Let, for n = 0 ,  1, 2 .... , V| denote the E-module 
V(w)| V(w+ y)| ... | V(w+ y (n -  1)). Then 

(i) The subspace S"(C N) is an E-submodule of V| 

(ii) The subspace J~(ClV) is an E-submodule of V | 
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Definition. The E-module Sn(C ~v) of (i) is called the nth symmetric 
power of the vector representation with evaluation point w and is denoted 
by SnV(w). The quotient V| ~v) by the submodule Jn(C ~v) of (ii) 
is called the n th exterior power of the vector representation with evaluation 
point w and is denoted by A n V(w). 

What the theorem means is that the L-operator on CN| (C ~v) | 

L(z, 2 ) = R  z - w ,  2 - ) ,  h (J) R Z - - W - - 7 , 2 - -  )' h (j) 
j = 2  j = 3  

�9 .. R ( z -  w -  7 ( n -  1 ), 7)(0,,) 

(02) 

(2) 

(the factors in the tensor products are numbered from 0 to n) preserves the 
subspaces C Iv | S"(C iv) and C N | Jn(ClV) �9 

In order to prove this theorem, we introduce another operator on 
CN| (CN) | It is the L-operator corresponding to the "opposite co- 
product:" 

n - 1 / (On) 
L'(z, 2 ) = R  z - w - ) , ( n -  l ) , 2 - 7  ~ h (J) 

j = l  

�9 .. R ( z -  w -  7, 2 - 7h(1)) (~ R(z  - w, 2) (~ 

Lemma 3.6. 

(i) 

(ii) 

L(z, 2)(l | wS(;t-  ~h(~ = (1 | WS(2))L'(z, ;~). 

(1 | W~'(2))L(z, 2)=L'(z, 2)(1 | W~'(2- ~,h(~ 

Proof. (i) The left-hand side is, by definition, IV, + I(Z, 2) with 

Z = ( z ,  w, w + ~,,..., w +  ( n -  1)),) 

with the notational convention that the factors are numbered from 0 to n. 
The right-hand side is another representation of Wn+ I(Z, 2) as a product 
of R-matrices. It corresponds to the diagram on the right in Fig. 1. The 
proof of (ii) is similar: the claim follows from the identity between two 
representations of Wn + I ( Z ,  ,~,)(n ..... 1) in the limit 

Z ~ ( z ,  w + ( n -  1) )',..., 27, 7) [[ 

Theorem 3.5 follows from this lemma and Prop. 3.4. 
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Example. The top exterior power A ~v V(w) is a one-dimensional 
E-module. The matrix elements of the L-operator are 

O(z-  w -  y) r l  0(2~--2k--~')  
Lo.(z, 2) 

O(z-  w -  yN) k . l l i  0(2i--2k) 

4. RUIJSENAARS OPERATORS 

The Ruijsenaars operators [ R ] are integrable difference operators that 
give a q-deformation of the Calogero-Moser integrable differential opera- 
tors. They act on functions on b*, i.e., functions f(2~,..., 2N) such that 

f(21 + a,..., 2~v+ a) = f(21,..., 2~v), a ~ C  

Let Fj be the shift by - y ~ j :  

G. f(~,,..., ~ )  =U(~, ..... ~ j -  y ..... ~ )  

and let t' be a non-negative integer (the "coupling constant"). The corre- 
sponding Ruijsenaars operator is (up to conjugation by a function, see 
[ H I )  

~' 0 ( , l , -  zj + t~) 
M = Z  I-I 1-, 

i---- 1 j : j ~ i  

It is a symmetric difference operator: if a ~ S~r acts on functions by a f ( 2 ) =  
f (a -12) ,  then aM = Ma for all a ~ Sly. 

Let us consider the transfer matrix associated to the symmetric power 
S"V(O). The zero weight space of this module is trivial unless n is a multiple 
of N. If n = ArE then the zero weight space is one-dimensional and is spanned 
by the sum of the tensors ei~ | . . .  | over all sequences (i j) such that 
each number between 1 and N occurs precisely f times. Let us denote this 
sum by e. 

Theorem 4.1. Let us identify S~Vf(CJV)[0] with C using the basis e, 
and let T(z) be the transfer matrix associated to SNeV(O). Then 

0(z - ~ )  
T(z) = M (3) 

0(z - ~N~) 

The rest of this section contains the proof of this theorem. 
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L e m m a  4.2. Let g be the weight zero tensor in (CN) | 

~ = e l |  ... | 1 7 4  "'" |174 "'" |  

where each e: appears : times. Let 

giv, : ( 2 )=  
: 0(~.:- ;tk + ys) 

I-I 1--[ l O( 2j - 2k -- y ( s -  1)) 
l < ~ j < k < ~ N  ---- 

Then there exists a non-zero constant C~v,: such that 

WSt(2) e =  CN, egN, : (2)  e 

Proof.  We know from Prop. 3.4 that the left-hand side must be 
proportional to the symmetric tensor e. It suffices therefore to compute the 
coefficient of ~ in this expression. It is easy to see that only diagonal 
elements in the R-matrices give a non-trivial contribution to this coefficient. 
Therefore gN, e is just a product of functions 

~(z, ~.)= O(z) 0(~ + ~,) 
O(z-  ~,) o(2) 

The values of z occurring here are of the form my for some negative integer m, 
so that no zeros or divergencies appear. The z-dependent factors contribute 
to CN, t. 

Let us compute the 2-dependent part of the product of functions 0q 
using a representation of w S :  by a diagram. As above, we number the lines 
from 1 to N :  from left to right at the bottom of the diagram. Let us say 
that the first : lines have weight 1, the next t' lines have weight 2 and so 
on. Let us compute the contribution to the product of a crossing between 
a line of weight j and a line of weight k-r j :  suppose that there are ni lines 
of weight i to the left of the crossing. Then the crossing contributes 
a(z, 2 j - - 2 k - - y ( n j - - n k ) )  (for some z) to the product. Crossings between 
lines with the same weight give a trivial contribution to the product. 

Taking together all crossings between lines of weight j and k, and then 
taking the product over all j < k yields 

~-i I O ( 2 : - - 2 k - - Y ( r - - s ) +  Y) 
g ~v, :( 2 ) = C ~v, : 1-[ O( 2j -- 2 k -- )'( r -- s ) ) 

j < k  r, s---- 1 

which can be simplified to the desired expression. II 

Remark. The constant CN, e can be easily computed. Let [m]! = 
1--I~'= 1 (O(yk)/0(Y)) denote the "elliptic factorial." Then CN,: = [ N :  ] ! / [ :  ]!~. 
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We can now complete the proof of the theorem. For any scalar function 

f (2 ) ,  

T(z) f(2) e= ~ tr(v~ L(z, 2) eFyf(2) 
J 

= c - ~  - - w s : ( ~  - ~ j )  ~ r j f ( ~ )  Y'.tr~o~jL(z, 2) ~ , : gN , : ( 20~ j ) '  
J 

Since both sides of (3) are symmetric difference operators (T(z) is sym- 
metric as a consequence of (1)) with shifts by -co~ .... , -co~v, it is sufficient 
to show that the coefficients of F~ on both sides coincide. By Lemma 3.6, 

tr(~ L(z, 2) WSe(2-  )'col) F 

- w~: ( , l ) , - (~  s  ~) - -  , . .  v[col] 

O(z-  ~,:) ~-I 0(2~ - 2k) 
= w s ~ ( ~ )  ~ O(z - y N t )  ""  0 ( ~  - ~k -- Y:)  

k----2 

O ( z -  ~,:) ~ 0(;t~ - 2k) 
= C~,:g~,:(2) e o(z_ )'N:) " ~ 0(~75 2k-- )':) 

k---2 

The second equality is obtained by using the explicit expression for the 
R-matrices. The calculation is simple, since only the diagonal entries give 
a non-vanishing contribution to the trace, and the product of R-matrices 
gives a product of functions ~ which factorize neatly, as in the proof of 
Lemma 4.2. 

It follows that the coefficient of F~ in T(z) is 

O(z-)':) ~ 0(21 - 2k) gt.lv(2) 
O(Z-- )'N:) k=2110(21 ---- 2k-- )':) g:,~(2-- )'col) 

O(z - ~:)  r~ 0(2 ~ - 2k + ~:)  
11 O(z-)'N:) 0(2~--2k) k - - 2  

We have used here the identity 

~v 0(2 2k + ~,:) 0(2 2k ~,:) ge, ~v(2) = H l - -  1 - -  - -  

g t , ~ ( 2 -  ~o~l) k = ,  0(21 -- 2k) '  

5. R-MATRICES, HIGHER RUIJSENAARS OPERATORS, 
AND THE DETERMINANT 

In the preceding section we have considered the L-operator L(z, 2) of 
S"V(w), the nth symmetric powers of the vector representation, and its 
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transfer matrices. In terms of R-matrices (see the Appendix), L(z, 2) is the 
R-matrix for the E-modules V(z) and S"V(w). More generally, we may 
consider the R-matrices for A m V(z) and S"V(w). The corresponding trans- 
fer matrices give then a family of commuting difference operators. 

Let V | = V(z) | V(z + y) | ... | V(z + (n - 1 ) y). Then we have 
R-matrices ~v,-~),  v,.~w)(2) for v| and V| (if z, w are generic) 
obeying the dynamical Yang-Baxter equation. They are products of 
fundamental R-matrices R(z, 2), (cf. the Appendix) associated to a diagram 
where each of the first m lines crosses each of the last n lines precisely once. 

Proposition 5.1. The R-matrix ~'v| v,.t,~)(2) is invertible for 
generic z, w and preserves the subspaces A |  where A is (cN) |  
sm(c u) or Jm(C ~t) and B is (cN) | S"(C N) or Jn(CN). 

Proos The invertibility follows from the fact that the product defining 
the R-matrix contains fundamental R-matrices whose spectral parameter is 
of the form z -  w + ry, with integer r, which are invertible for generic z -  w. 
The other claim is proved by commuting the R-matrix with W,~ "(2) |  Id 
and Id | W s' "(2) using Lemma 3.2 as in the proof of Lemma 3.6. The 
details are left to the reader. I 

In particular we have invertible R-matrices ~A ~ v<z). s.v~w), 
~'A m V<z). A. v~w) obeying dynamical Yang-Baxter equations for submodules 
and quotients. It follows that, if we set F u f ( 2 ) = f ( A - y p )  (so that 
F j=  F%) then the transfer matrices 

Tin(z) = ~  tr^,  vr ~ ^ ,  vt,),su, vr u, 
/.z 

m = l  .... , N  

are commuting difference operators on the space of functions of 2 ~ b* with 
values in sNe V(0) [ 0 ] ~- C. 

Here is an explicit formula for Tin(z) in terms of the matrix elements 
of the L-operator of S"V(0): let IJI denote the cardinality of a subset J of 
{ 1,..., N}. Then 

Tm(z)  f ( , t ) =  y" e( ~r ) Ljo, , ,j, ( z, ,~ - ~( % + . . .  + c %  ) ) 
1 <~Jl < "'" <Jm <~N ~ E S m  

�9 . .Lj , ,m,j , , (z-(m- 1)y, 2) f(2-y(ogj, + ... +coj,.)) (4) 

Let us compare these operators commuting with M with the higher 
Ruijsenaars operators. 

822/89/5-6-6 
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The Ruijsenaars operator M is part of an algebra of S~r-symmetric 
commuting difference operators generated by M s -  M, M2,..., M~v, with 

M== Z H 
S, ISl=m yeS, k~S  

Theorem 5.2. 
gin( z, 7) SO that 

There exist non-zero meromorphic scalar functions 

Tm(z)=gm(Z, 2) Mm, m=l, . . . ,N 

Proof. The exterior powers of the vector representation have non- 
zero weight spaces A m (C~r)[/l ] = Cej, ^ ... A ej,,, of weight /~ = Zt  a~j, 
(j~ < "'" < jm)- It follows that both sides of the equation we have to prove 
are S~v-symmetric difference operators of the form Y'.s, lsl=,,,A~.'(z, 2)x  
I - I j~  Fj. We also know that Tin(z) commutes with M. This implies that the 
coefficients A~' obey difference equations in 2. The idea it to show that 
these difference equations uniquely determine the coefficients up to multi- 
plication by a constant. 

The coefficients As(mz, 2) of Tin(z) are meromorphic functions. As func- 
tions of 2 they are periodic in each 2k with period one and they depend 
only on the differences 2 i -  2k. They can be thus considered as functions of 
N -  1 of the variables 2j. 

Let h(x)= O(x + y)/O(x). I f j~  J, the fact that Tin(z) commutes with M 
implies the difference equations 

h(21 2k-- ?) 
A T ( z ,  ,~ - ~'%) = 1-I As(m z, ,~), 

kCS h(2l--2k) 
j ~ J  

It is easy to check that the coefficients appearing in Mm also obey these dif- 
ference equations. If IJI = N or N -  1, this is sufficient to prove the claim. 
Namely, in these cases we have a first order difference equation for all coef- 
ficients and all variables 2j (if [J[ = N -  1 we view A ~' as a function of N -  1 
variables 2j, j ~ J). We conclude that, for any J with [J[ i> N -  1, the ratio 
between the coefficient of r I j~s  Fj in Tin(z) and the coefficient of I-Ij~s Fj 
in Mm is a meromorphic function gs(z, 2; ?) which, as a function of 2k 
(1 ~< k ~< N), is periodic with period ), and with period 1. Taking ~, to be an 
irrational real number, we see that gs must be independent of 2. Since both 
Tin(z) and Mm are SN-symmetric, all gs with I J I -  m must be equal to the 
same function gin. 
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We have shown that T,,,(z) = g,,,(z, y) M,, for m = N, N -  1 and some 
functions g,,, which are not identically zero since they do not vanish at 
y = 0, see below. In particular, this implies that T,,(z) commutes with 

N 

E 1-I h( ,-zj)r7 
j f l  k ~ j  

since M ~ =  1-IJr It follows that, for all m, the coefficients A 7 also 
obeys the difference equations with respect to the variables 2j, j r J: 

h ( 2 k - 2 j - ) , ) A s  ( , 2 ) ,  jdgJ m m Z A d(z, i]. + y(_Dj)= H h(~k - ~j) 

of which the coefficients appearing in M,,, are clearly also a solution. 
Proceeding as in the case m = N, N - 1 ,  we see that the difference 

equations uniquely determine all coefficients up to a factor independent 
of 2. By the S~r symmetry, all factors (for fixed m) coincide. 

We have still to prove that the functions g,,,(z, 2) are not identically 
zero. As y--,0, R(z, 2;~,) tends to the identity, so T,,,(z) tends to 
~s. tsl=,. I-Ij~s Fj. The same holds for M,.. It follows that g.,(z, O)= 1. | 

More generally, for any E-module W with L-operator L(z, 2), we have 
a family T,,,(z), z ~ C, 1 <~ m <~ N of commuting difference operators on 
W[ 0 ]-valued functions, given by (4). In general the dimension of W[0 ] is 
not one, so one gets vector valued generalizations of the Ruijsenaars model. 

These operators are in the "operator algebra" iFV1 ] of difference 
operators on W-valued functions of 2. By definition, the operator algebra 
is generated by the difference operators ls Lij(z, 2)/"j, 1 ~< i, j, ~< N. It 
is clear from (4) that the T,,(z) are polynomials in these difference 
operators. 

The transfer matrix T~c(z) associated to the top exterior power is 
related to the quantum determinant (cf. [FV3 ], Section 10): 

N 

TN(z)= rk(2-yh) Det(z, ~) I-I Fj, ~b(2) = 1-[ 0 (2 , -2 j )  

A 

The difference operator Det(z)= Det(z, 2) 1-I/'j defined by this formula is 
a central element (for all z) of the operator algebra. This can be seen by 
writing the Yang-Baxter equation on V(z)| A" V(w)| W, using the for- 
mula in the example at the end of Section 3 for the R-matrix of the first 
two factors. 
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6. CONCLUSIONS 

We have constructed some finite-dimensional modules over the elliptic 
quantum groups associated to sl~r. They are elliptic deformations of sym- 
metric and exterior powers of the vector representation. Modules corre- 
sponding to more general Young diagrams will be considered elsewhere. 

Transfer matrices associated to modules over elliptic quantum groups 
are commuting difference operators acting on functions with values in 
the zero weight space of the quantum space. We have considered here the 
special case where the zero weight space is one-dimensional. 

In this case the commuting difference operators turn out to be essen- 
tially the Ruijsenaars operators. The advantage of this reformulation in 
terms of transfer matrices lies in the fact that we can apply the Bethe ansatz 
method to find eigenvectors. In the s12 case this was done in [ FV4, FV5 ]. 
In general, an adaptation of the "nested" Bethe ansatz to the dynamical 
case should give the result. In particular, one would get a quantum version 
of the spectral varieties of [ FV1, FV2 ]. 

APPENDIX A. R-MATRICES AND TRANSFER MATRICES 

We give here some details on R-matrices and commuting transfer 
matrices. In particular, we explain the interpretation of R-matrices as inter- 
twiners for elliptic quantum groups and give the construction of commuting 
transfer matrices from R-matrices. The constructions are standard in quantum 
integrable systems based on the (non-dynamical) Yang-Baxter equation. 
All claims below follow easily from the definitions and from the dynamical 
Yang-Baxter equation. 

Let Pv, rv~ Hom( V| W, W| V) be the flip v | 1 7 4  Let 
W~, W2 be E-modules with L-operators L~ and Lz. A morphism (or inter- 
twiner) from Wl to W2 is a meromorphic function ~b: b* ~ Hom~( W1, Wz) 
such that Id| 2)=Lz(z, 2) Id| An R-matrix for 
Wl and W2 is a meromorphic function ~ :  I)* ~ End~( W~ | W2) so that 

is a morphism. 
For example ~ ( 2 )  - -  R ( z l  - -  2 2 ,  )], ) is an R-matrix for the evaluation 

modules V(z~) and V(z2), as a consequence of the dynamical Yang-Baxter 
equation. Let us call it the fundamental R-matrix with spectral parameter 
Z 1 - -  22  . 
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Suppose that W~, W2 and W3 are E-module and that ~ ,  ~ is an 
R-matrix for W~ and Wj ( 1 <~ i < j ~< 3). Then 

~ W , ~  W2, W3(2) "- ~W,,  W3(/~) (13) ~ W  2, W3(2 -- ~'h(l)) (23) 

�9 ~wt ,w2 |  w3 (/]-) = ~ w , ,  w3 (2 -- yh(2)) (13) ~w, ,  I;V2)(~) (12) 

are R-matrices for Wi | W2, W3 and for Wt, W2 (~) W3, respectively. 
In particular, we see by iterating this construction that there are 

R-matrices ~w~. rv2 obtained as products of fundamental R-matrices, if 
W~, W2 are tensor products of vector representations with generic evalua- 
tion points. We have, for instance, ~lV(z), w(2)= Lw(z, 2), the L operator of 
the tensor product W of vector representations. By construction, these 
R-matrices obey the dynamical Yang-Baxter equation 

~ w l ,  W2(/]. -- yh(3)) (12) ~Wt ' W3(/~) (13) ~W2 ' W3(/~ -- yh(1)) (23) 

"-- ~W2 ' I;II3(,/],) (23) ~W! , W3(/~ -- ~,h(2))(13) ,~wi ' w2(2) (12) 

and the "unitarity" property 

(2) r - I d  �9 .~Wt ' W2(/].) (12) ~W2, W t rift| W2 

In particular R-matrices for generic tensor products of vector representa- 
tions are invertible. 

Suppose that ~rv~. rv 2 is an R-matrix for E-modules Wt, W2. The 
transfer matrix with "auxiliary space" Wt and "quantum space" W2 is the 
difference operator acting on functions on b* with values in the zero weight 
space W2[0] of W2 

Tw,, w2f(2)= Z trw, tua(~w,, rv2(2)) f ( 2 -  7#) 
pcb* 

Proposition A.1. Suppose that Wt, W2, W3 are E-modules with 
R-matrices ~rv,, ~ obeying the dynamical Yang-Baxter equation. Let for 
i = 1, 2T~= Try,, rv 3 be the transfer matrices with quantum space W3 and 
assume that ~rv~, w2(2) is invertible for generic 2. Then TI T2 = T2 T~ on 
W~[0]. 

Proof. On W~ | W2 | ( W3[ 0 ]) we can write the Yang-Baxter equa- 
tion in the form 

~rv,, w3(2) ~3) ~rv2, w3 (~.- ~'h(~)) (23) 
[]~(12) --1 /],)(23) (2) (13) )(12) = (~w,, w~,,, ) ~ ,~ ,  rye( ~rv,, rye(2- ~h ) ~rv,, rye(2 

Taking the trace over W~ | I412 yields the result. 
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